Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ahmet Cetin, ${ }^{\text {a }}$ Muharrem Dinçer, ${ }^{\text {b }}$ Namık Özdemir, ${ }^{\text {b }}$ Osman Dayan ${ }^{c}$ and Ahmet Cansız ${ }^{\text {a* }}$

${ }^{\text {a Department of Chemistry, Science Faculty, Firat }}$ University, 23119 Elazığ, Turkey, ${ }^{\text {b }}$ Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Science Faculty, Ege University, 35100 İzmir, Turkey

Correspondence e-mail: namiko@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.147$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,3'-(Pyridine-2,6-diyl)bis(4-allyl-4,5-dihydro-1H-1,2,4-triazole-5-thione)

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{~S}_{2}$, the asymmetric unit consists of two independent molecules which differ from each other in the orientation of the allyl group. In each molecule, there are two very weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In the crystal structure, the two independent molecules are arranged alternately through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen-bonded rings to form a molecular chain running along the [12 $\overline{1}$] direction.

Comment

1,2,4-Triazoles and their derivatives represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities including antibacterial, antifungal, antiviral, anti-inflammatory, anticonvulsant, antidepressant, antihypertensive, analgesic and hypoglycaemic properties (Abbas \& Khalil, 2005; Holla et al., 1998). Carboxylic acid hydrazides are condensed with carbon disulfide in ethanolic potassium hydroxide to yield the potassium 3-aroyldithiocarbazates, which are cyclized with hydrazine to the triazoles (Cansız et al., 2004; Reid \& Heindel, 1976). In addition, there are some studies of electronic structures and thiol-thione tautomeric equilibrium of heterocyclic thione derivatives (Koparır et al., 2005; Coyanis et al., 2002). In view of these important properties, the present single-crystal X-ray diffraction study of the title compound, (II), was carried out.

The asymmetric unit of (II) contains two crystallographically independent molecules, denoted A (atoms $\mathrm{S} 1 /$ S2/N1-N7/C1-C15) and B (atoms S3/S4/N8-N14/C16-C30) (Fig. 1). The molecule of (II) contains three bonded planar rings, which are not coplanar with each other. In molecule A, the central pyridine ring makes dihedral angles of 10.9 (2) and

Figure 1
The two crystallographically independent molecules of (II), showing 30\% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts are represented by dashed lines. For clarity, only H atoms involved in intramolecular hydrogen bonding have been included.

Figure 2
Part of the crystal structure of (II), showing the formation of onedimensional linear chains of molecules connected by $R_{2}^{2}(8)$ rings. Dashed lines show the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions. For the sake of clarity, H atoms not involved in the motif have been omitted.
$5.96(19)^{\circ}$ with triazole rings $\mathrm{N} 1-\mathrm{N} 3 / \mathrm{C} 1 / \mathrm{C} 2$ and $\mathrm{N} 5-\mathrm{N} 7 / \mathrm{C} 11 /$ C 12 , respectively, while these angles are 21.86 (10) and $14.26(15)^{\circ}$ in molecule B for rings N8-N10/C16/C17 and N12N14/C26/C27, respectively. The rotations of the two triazole rings are mainly due to the steric repulsion between the two allyl groups bonded to the two triazole rings. The $\mathrm{C}-\mathrm{S}$ bond distances [1.667 (3)-1.676 (3) Å; Table 1] agree well with similar bonds in related compounds, being intermediate between the value of $1.82 \AA$ for a $\mathrm{C}-\mathrm{S}$ single bond and $1.56 \AA$ for a $\mathrm{C}=\mathrm{S}$ double bond (McCarrick et al., 1999; Dinçer et al., 2005). The C2-N2, C12-N6, C17-N9 and C27-N13 bond distances of 1.335 (4), 1.335 (4), 1.328 (4) and 1.329 (4) \AA, respectively, are indicative of some double-bond character. The $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ bond lengths mentioned above indicate intermediate character between thione and thiol structures.

In each molecule of (II), two very weak intramolecular hydrogen bonds are observed between the allyl group H and
the pyridine N atoms (Table 2), which lead to the formation of six-membered rings with graph-set descriptor $S(6)$ (Bernstein et al., 1995). In the crystal structure, molecules A and B are linked alternately by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 2), which form $R_{2}^{2}(8)$ rings (Fig. 2). Propagation of these hydrogen-bonded rings generates a chain of molecules running along the [12 $\overline{1}]$ direction.

Experimental

Compound (I) was prepared according to our previously reported laboratory method (Çetin, 2004). A stirred mixture of compound (I) $(0.393 \mathrm{~g}, 1 \mathrm{mmol})$ and sodium hydroxide $(40 \mathrm{mg}, 1 \mathrm{mmol}$, as a 2 N aqueous solution) was refluxed for 4 h . After cooling, the solution was acidified with hydrochloric acid and the precipitate was filtered off. The precipitate, (II), was then recrystallized from a mixture of ethanol and dioxane ($100 \mathrm{ml}, 3: 1 \mathrm{v} / \mathrm{v}$) (yield $0.286 \mathrm{~g}, 80 \%$; m.p. 532 K). IR (ν, cm^{-1}): 3140-3064 (Ar CH), 2980-2878 (Al./Allyl CH), 2945-2762-2560 (SH).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{~S}_{2}$
$M_{r}=357.46$
Triclinic, $P \overline{1}$
$a=10.0527$ (7) A
$b=10.7295$ (7) \AA
$c=16.5864$ (12) \AA
$\alpha=73.027$ (5) ${ }^{\circ}$
$\beta=88.204(6)^{\circ}$
$\gamma=89.503(6)^{\circ}$

$$
\begin{aligned}
& V=1710.3(2) \AA^{3} \\
& Z=4 \\
& D_{x}=1.388 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.32 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.46 \times 0.35 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS 2 diffractometer
ω scans
Absorption correction: integration

$$
(X-R E D 32 ; \text { Stoe \& Cie, 2002) }
$$

$$
T_{\min }=0.873, T_{\max }=0.940
$$

> 25011 measured reflections
> 6725 independent reflections
> 5075 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.038$
> $\theta_{\max }=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.082 P)^{2} \\
&+0.6577 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

S1-C2	$1.667(3)$	N7-C12	$1.378(3)$
S2-C12	$1.671(3)$	N7-C13	$1.467(3)$
S3-C17	$1.676(3)$	N8-C16	$1.307(4)$
S4-C27	$1.674(3)$	N8-N9	$1.360(4)$
N1-C1	$1.305(4)$	N10-C16	$1.376(4)$
N1-N2	$1.361(4)$	N10-C17	$1.376(4)$
N3-C2	$1.372(4)$	N10-C18	$1.461(4)$
N3-C1	$1.373(4)$	N12-C26	$1.303(4)$
N3-C3	$1.454(4)$	N12-N13	$1.366(4)$
N5-C11	$1.310(4)$	N14-C27	$1.374(4)$
N5-N6	$1.360(3)$	N14-C26	$1.379(4)$
N7-C11	$1.374(3)$	N14-C28	$1.478(4)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 4$	0.97	2.53	$3.131(4)$	120
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{~N} 4$	0.97	2.47	$3.054(4)$	118
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{~N} 11$	0.97	2.47	$3.150(4)$	127
C28-H28B N 11	0.97	2.44	$3.071(4)$	123
N2-H2 $\cdots \mathrm{S} 3^{\mathrm{i}}$	0.86	2.42	$3.266(3)$	169
N6-H6 S^{ii}	0.86	2.37	$3.212(2)$	167
N9-H9A $\cdots \mathrm{S} 1^{\mathrm{i}}$	0.86	2.47	$3.297(3)$	163
$\mathrm{~N} 13-\mathrm{H} 13 \cdots \mathrm{~S} 2^{\mathrm{ii}}$	0.86	2.43	$3.288(3)$	172

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x,-y,-z+2$.
H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

AÇ is greateful to TÜBİTAK-BAYG (the Scientific and Technical Research Council of Turkey - Directorate of

Human Resources Development) for assistance in supporting the synthesis of (II). This study was supported financially by the Research Centre of Ondokuz Mayıs University (Project No. F-366).

References

Abbas, A. A. \& Khalil, N. S. A. M. (2005). Nucleosides Nucleotides Nucleic Acids, 24, 1353-1372.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cansız, A., Koparır, M. \& Demirdağ, A. (2004). Molecules, 9, 204-212.
Çetin, A. (2004). PhD Thesis, Firat University, Elazığ, Turkey.
Coyanis, E. M., Vedova, D. C. O., Has, A. \& Winter, M. (2002). J. Fluorine Chem. 117, 185-192.
Dinçer, M., Özdemir, N., Çetin, A., Cansız, A. \& Şekerci, M. (2005). Acta Cryst. E61, o3214-o3216.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Holla, B. S., Sarojini, B. K. \& Gonsalves, R. (1998). Il Farmaco, 53, 395-398.
Koparır, M., Çetin, A. \& Cansız, A. (2005). Molecules, 10, 475-480.
McCarrick, R. M., Squattrito, P. J., Singh, R. N., Handa, R. N. \& Dubey, S. N. (1999). Acta Cryst. C55, 2111-2114.

Reid, J. R. \& Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925-926.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

